Search for collections on Repository Universitas Jenderal Soedirman

Solusi Persamaan Diophantine Non-Linier (7 -1) (7k )y=z2

RAHMAWATI, Reni (2019) Solusi Persamaan Diophantine Non-Linier (7 -1) (7k )y=z2. Skripsi thesis, Universitas Jenderal Soedirman.

[img] PDF (Cover)
COVER-Reni Rahmawati-H1B014040-Skripsi--2019.pdf

Download (524kB)
[img] PDF (Legalitas)
LEGALITAS-Reni Rahmawati-H1B014040-Skripsi--2019.pdf
Restricted to Repository staff only

Download (839kB)
[img] PDF (Abstrak)
ABSTRAK-Reni Rahmawati-H1B014040-Skripsi--2019.pdf

Download (619kB)
[img] PDF (BabI)
BAB I-Reni Rahmawati-H1B014040-Skripsi--2019.pdf
Restricted to Repository staff only

Download (681kB)
[img] PDF (BabII)
BAB II-Reni Rahmawati-H1B014040-Skripsi--2019.pdf
Restricted to Repository staff only

Download (1MB)
[img] PDF (BabIII)
BAB III-Reni Rahmawati-H1B014040-Skripsi--2019.pdf
Restricted to Repository staff only

Download (511kB)
[img] PDF (BabIV)
BAB IV-Reni Rahmawati-H1B014040-Skripsi--2019.pdf
Restricted to Repository staff only

Download (1MB)
[img] PDF (BabV)
BAB V-Reni Rahmawati-H1B014040-Skripsi--2019.pdf
Restricted to Repository staff only

Download (584kB)
[img] PDF (DaftarPustaka)
DAFTAR PUSTAKA-Reni Rahmawati-H1B014040-Skripsi--2019.pdf
Restricted to Repository staff only

Download (641kB)
[img] PDF (Lampiran)
LAMPIRAN-Reni Rahmawati-H1B014040-Skripsi--2019.pdf
Restricted to Repository staff only

Download (1MB)

Abstract

Penelitian ini membahas tentang penentuan solusi persamaan Diophantine non-linier 7 1 7z dengan x, y, dan z adalah bilangan bulat non, negatif, serta k adalah bilangan bulat genap positif. Solusi untuk X=0 dan y=0 diperoleh menggunakan konjektur Catalan. Sementara itu, solusi untuk x>1 dan y>1 diperoleh menggunakan teori kekongruenan. Hasil penelitian menunjukkan bahwa persamaan Diophantine tersebut mempunyai solusi tunggal, yaitu k2(x ,y ,z ) = (1, 0, 7 k/2).

Item Type: Thesis (Skripsi)
Nomor Inventaris: K19043
Uncontrolled Keywords: bilangan bulat, konjektur Catalan, persamaan Diophantine non-linier, solusi, teori kekongruenan
Subjects: M > M136 Mathematics
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > S1 Matematika
Depositing User: Mr Rohmadi Rohmadi
Date Deposited: 30 Aug 2022 08:24
Last Modified: 31 Aug 2022 01:41
URI: http://repository.unsoed.ac.id/id/eprint/17933

Actions (login required)

View Item View Item