
BI ODI VE RS I TAS  ISSN: 1412-033X 

Volume 23, Number 1, January 2022 E-ISSN: 2085-4722  
Pages: 222-230 DOI: 10.13057/biodiv/d230128 

Genetically continuous populations of Striped Snakehead  

(Channa striata) in the Cingcingguling River fragmented by Sempor 

Reservoir, Central Java, Indonesia 

NUNING SETYANINGRUM1, W. LESTARI1, KRISMONO2, AGUS NURYANTO1,  
1Faculty of Biology, Universitas Jenderal Soedirman. Jl. Dr. Soeparno 63, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia.  

Tel.: +62-281-638794, Fax.: +62-281-631700, email: agus.nuryanto@unsoed.ac.id 
2Research Institute for Fisheries Enhancement, Ministry of Marine Affairs and Fisheries. Jl. Cilalawi No. 1, Purwakarta 41152, West Java, Indonesia 

Manuscript received: 20 November 2021. Revision accepted: 23 December 2021.  

Abstract. Setyaningrum N, Lestari W, Nuryanto A. 2022. Genetically continuous populations of Striped Snakehead (Channa striata) in 

the Cingcingguling River fragmented by Sempor Reservoir, Central Java, Indonesia. Biodiversitas 23: 222-230. Cingcingguling River, 
located in Kebumen District, Central Java Province, Indonesia. The Sempor Reservoir fragments it. The previous study proved the 

negative impact of the reservoir on positive rheotaxis fish, mainly in genetic constituents between the reservoir and river populations. 

However, research has not been conducted on the negative rheotaxis fish, such as Channa striata. Assessing population genetic and 

taxonomic validity study of Striped Snakehead in the Cingcingguling River is an essential effort. Both studies could be done using the 
cytochrome c oxidase 1 gene. Therefore, this research aims to determine taxonomic status and evaluate the population genetic of C. 

striata in the Cingcingguling River. The samples were collected at eight sites, inside and outside the reservoir. The used marker was 

sequenced from 53 individuals, and all specimens showed high identity (98.67% to 100%) and low genetic distances (0.00 to 0.01) to C. 

striata (KU692421, KU852443, and MG438366). Those values proved that all samples were genetically identified as Channa striata. 
The vertical genetic distribution analysis demonstrated that C. striata populations are genetically not different along the river. Unlike 

rheotaxis positive fish phenomena, the reservoir's existence does not cause genetic fragmentation and leads to continuous striped 

snakehead populations. 
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INTRODUCTION 

Striped snakehead (Channa striata) is an important 

freshwater fish species in several Asian countries. In 

Indonesia, it is mainly found in the main islands of the 

Sunda Shelf, including Sumatra, Java, and Borneo 

(Adamson et al. 2010; Lakra et al. 2010; Bezinger et al. 

2011; Coad et al. 2016). Currently, this species is also 

found in the lesser Sunda Island, such as Bali (Yudha et al. 

2018), and introduced to the Wallacea Regions (Irmawati 
et al. 2017). C. striata is primarily discovered in stagnant 

or swampy water ecosystems (Amilhat and Lorenzen 2005; 

Muflikhah 2007; Listyanto and Andriyanto 2009). This 

species was also found both inside and outside Sempor 

Reservoir in the Cingcingguling River, Central Java, 

Indonesia (Setyaningrum et al. 2020; 2021).  

Aquatic organisms are able to move in response to 

water currents, known as rheotaxis (Baker and 

Montgomery 1999; Kanter and Coombs 2006; Enders et al. 

2009). Fish that actively swim against the water current is 

referred to as positive rheotaxis fish (Suli et al. 2012; Back-

Coleman et al. 2015; Oteiza et al. 2017). In the case of C. 

striata, previous studies had reported that C. striata also 

lives in the river, but it could only be found in the parts of 

the river with stagnant water, river flood plain, and 

reservoir. It seems that C. striata tended to avoid water 

current (Iskandar and Dahiyat 2012; Nuryanto et al. 2012; 

Roesma 2013; Nuryanto et al. 2015). Therefore, C. striata 

could be grouped into negative rheotaxis fish. Fish species 

that tend to avoid water current are negative rheotaxis fish 
(Enders et al. 2009; Febrina 2016). 

Sempor Reservoir was built approximately 51 years ago 

and has caused the Cingcingguling River to be fragmented 

into two extremely different habitats. These include 

entirely stagnant and running water bodies located 

underneath the reservoir (Hedianto et al. 2014). The 

reservoir is a physical barrier for gene flow and causes 

significant genetic differences among its populations 

(Heggenes and Roed 2006). However, the available data 

concerning the reservoir's negative impact on river 

populations was only available for the positive rheotaxis 

fish species (Wibowo et al. 2012; Bahiyah et al. 2013; 

Barasa et al. 2014; Plavova et al. 2017). Meanwhile, there 

is no recorded information about the reservoir's genetic 

effect on negative rheotaxis fish species. Therefore, it is 

essential to research the genetic impact of Sempor 

Reservoir on the C. striata population in the 
Cingcingguling River. 

The genetic impact of a reservoir on the fish population 

could be assessed with a molecular tool, such as the 

cytochrome c oxidase 1 (COI) gene (Nuryanto et al. 2019). 

Previous research reported that it was used as a robust 

marker for population genetic analysis of C. striata in 

Perak State situated in Malaysia (Jammaluddin et al. 2011; 
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Tan et al. 2012; 2015). Nevertheless, population genetic 

research tends to be carried out when the taxonomic status 

of the analyzed organisms is valid. In the case of C. striata, 

it was reported that the morphological identification of 

samples obtained from different regions showed 

inconsistent diagnostic characters (Zhu et al. 2013; Arma et 

al. 2014; Khan et al. 2019; Muslimin et al. 2020). 

Taxonomic validity could also be determined using the 

cytochrome c oxidase 1 (COI) gene (Ko et al. 2013; 

Nuryanto et al. 2017; 2019; 2020). Furthermore, it was 

reliable for species delineation of C. striata from Sumatra 

(Muchlisin et al. 2013; Dahruddin et al. 2016; Irmawati et 
al. 2017; Syaifudin et al. 2020) and is used to validate 

morphological identification (Nuryanto et al. 2021). 

Therefore, this research was aimed to validate and assess 

the taxonomic status and genetic population of C. striata in 

Sempor Reservoir Central Java using cytochrome c oxidase 

1 gene. 

MATERIALS AND METHODS 

Research location and sampling sites  
Striped snakehead specimens were collected from eight 

different sites, four of them were situated inside the 

reservoir, while the remaining were located downstream 

(Figure 1). The specimens were collected using traps and 

lines with the help of fishers. Tinny tissue samples were 

chopped from the pectoral fin of each specimen and 

preserved in ethanol 96%. 

Procedures 
Genomic DNA extraction and marker polymerization  

The total genome was extracted from the pectoral fin 

tissue using the Quick-DNA™ Miniprep Plus kit adopted 

from Zymo’s research. Extraction procedures were carried 

out based on the company’s manual, and its success was 

tested using 1% agarose electrophoresis. Subsequently, the 

COI gene target fragments were reproduced using FishF2 

and FishR2 primers (Ward et al. 2005) in Primus 25 Peqlab 

Thermocycler. Meanwhile, 50 μL of amplified reactions 

consisted of 1x buffer PCR, 2 mM MgCl2, 0.2 mM of each 

primer, 0.2 mM dNTP mix, 1 U Taq polymerase, and 2.0 

ng/μL template DNA. Furthermore, the final volume of 50 

μL was adjusted by adding DNA-RNA-free water. Thermal 

cycles were pre-denatured at 95°C for 4 minutes and were 

repeated 35 times. The denaturation steps lasted for 30 
seconds at 95°C, 2 minutes at 53°C, and 1 minute at 72°C 

for primer annealing and chain elongation. Additionally, a 

final extension terminated the cycles after 5 minutes, at 

72°C. The PCR products were stained using ethidium 

bromide and 1.5% agarose gel and placed under ultraviolet 

light. Gel documentation was further performed using the 

GelDoc apparatus (BioRad). 

 

 
 

 
 

Figure 1. Research location with five sampling sites along the river in in Cingcingguling River, Central Java, Indonesia. Four 

subsampling sites are located inside the reservoir 
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Marker sequencing and editing 

The PCR products of the marker were shipped to 1st 

BASE Malaysia for sequencing, while that the sequencing 

process was performed using the Sanger method. 

Consensus and multiple sequences alignment were 

obtained by assembling the forward and reverse sequences 

using ClustalW ver.1.4 in Bioedit (Hall 2011). Haplotype 

data was obtained from its generating process in DnaSP 5 

(Rozas et al. 2017).  

Data analysis 
The striped snakehead specimens' taxonomic status was 

validated through a sequence identity test carried out using 

a basic local alignment search tool (BLAST) closest to the 

taxa in GenBank. Genetic distance was also used to support 

the identity data. Haplotypes (h) and nucleotide (π) 

diversities were calculated using Arlequin 3.5, while 

neutral evolution of the COI marker was estimated using 

Fu's Fs and Tajima D test (Excoffier and Lischer 2010). 
Population differentiation was calculated using Fst and 

variance analysis (AMOVA) in Arlequin 3.5 (Excoffier and 

Lischer 2010). It was also estimated using a shared 

haplotype observed in its network. The network was 

reconstructed using the median-joining method in 

NETWORK software (Bandelt et al. 1999). The 

phylogenetic relationship of C. striata in Cingcingguling 

River was estimated using Neighbor-Joining (NJ) and 

Maximum Likelihood algorithms in MEGA X (Kumar et 

al. 2018) with 1000 bootstraps replications. Also, the 

topological stability tree was obtained from the out-group 

comparison (Channa gacua MK599522; Channa 

micropeltes JN024962; Channa Lucius KJ937433). 

RESULTS AND DISCUSSION 

Taxonomic status  
The COI gene of 53 Channa specimens was 

successfully sequenced, resulting in fragments within the 
range of 596 bp to 689 bp lengths. Sequence identity test 

showed that the samples were genetically similar to the top 

10 hits closest taxa in the GenBank, all identified as C. 

striata (KU692421, KU852443, and MG438366). 

However, their percentages were between 98.67% and 

100%, with the expected value being 0.0. The samples 

showed varied genetic distances following Kimura 2 

parameter (K2P) from 0.000 % to 1.019, indicating low 

genetic distances to their closest related taxa in GenBank 

(Table 1). 

This research delineated the samples as C. striata 

because their high genetic identities (above 97%) and 

genetic distance were less than 3%, respectively, to their 

conspecific. According to Ratnasingham and Hebert 

(2013), this is the standard identity threshold for animal 

species determination. Simultaneously, a distance of 3% is 

acceptable for threshold species determination in fish 
barcoding (Ratnasingham and Hebert 2007; Hubert et al. 

2010; Candek and Kuntner 2015). Even though a higher 

threshold of approximately 4% and 5% is allowed, other 

factors need to be considered (Higashi et al. 2011; Jeffrey 

et al. 2011; Candek and Kuntner 2015). 
 

 
Table 1. Sample code, expect value, percent identity, genetic 

distances, and closest taxa in GenBank 

 

Sample 

code 

E-

value 

Percent 

identity 

(%) 

Genetic 

distance 

(%) 

Closest taxa in GenBank 

KW 1 0.0 100.0 0.000 Channa striata KU692421 
KW 2 0.0 100.0 0.000 Channa striata KU692421 

KW 3 0.0 98.67 1.019 Channa striata KU852443 

KW 4 0.0 100.0 0.000 Channa striata KU692421 

KW 5 0.0 100.0 0.000 Channa striata KU692421 
KW 6 0.0 100.0 0.000 Channa striata KU692421 

KW 7 0.0 100.0 0.000 Channa striata KU692421 

KW 8 0.0 100.0 0.000 Channa striata KU692421 

KW 9 0.0 100.0 0.000 Channa striata KU692421 
KW 10 0.0 100.0 0.000 Channa striata KU692421 

BK 1 0.0 100.0 0.000 Channa striata KU692421 

BK 2 0.0 100.0 0.000 Channa striata KU692421 

BK 3 0.0 100.0 0.000 Channa striata KU692421 
BK 4 0.0 100.0 0.000 Channa striata KU692421 

BK 5 0.0 100.0 0.000 Channa striata KU692421 

BK 6 0.0 100.0 0.000 Channa striata KU692421 

KA 1 0.0 100.0 0.000 Channa striata KU692421 
KA 2 0.0 100.0 0.000 Channa striata KU692421 

KA 3 0.0 100.0 0.000 Channa striata KU692421 

KA 4 0.0 100.0 0.000 Channa striata KU692421 

KA 5 0.0 100.0 0.000 Channa striata MG438366 
KA 6 0.0 99.20 0.169 Channa striata KU692421 

KA 7 0.0 99.54 0.000 Channa striata KU692421 

WO 1 0.0 99.68 0.508 Channa striata KU692421 

WO 2 0.0 99.84 0.000 Channa striata KU692421 
WO 3 0.0 99.35 0.848 Channa striata MG438366 

WO 4 0.0 99.69 0.000 Channa striata KU692421 

KS 1 0.0 99.07 0.678 Channa striata KU692421 

KS 2 0.0 100.0 0.000 Channa striata KU692421 
KS 3 0.0 100.0 0.000 Channa striata KU692421 

KS 4 0.0 100.0 0.000 Channa striata KU692421 

KS 5 0.0 100.0 0.000 Channa striata KU692421 

KS 6 0.0 100.0 0.000 Channa striata KU692421 
KS 7 0.0 98.77 0.849 Channa striata KU692421 

KS 8 0.0 100.0 0.000 Channa striata KU692421 

KS 9 0.0 100.0 0.000 Channa striata KU692421 

KS 10 0.0 100.0 0.000 Channa striata KU692421 
PW 1 0.0 99.84 0.000 Channa striata KU692421 

PW 2 0.0 100.0 0.000 Channa striata KU692421 

KB 1 0.0 100.0 0.000 Channa striata KU692421 

KB 2 0.0 100.0 0.000 Channa striata KU692421 
KB 3 0.0 100.0 0.000 Channa striata KU692421 

KB 4 0.0 100.0 0.000 Channa striata KU692421 

KB 5 0.0 100.0 0.000 Channa striata KU692421 

KB 6 0.0 100.0 0.000 Channa striata KU692421 
KB 7 0.0 100.0 0.000 Channa striata KU692421 

KB 8 0.0 100.0 0.000 Channa striata KU692421 

KB 9 0.0 99.84 0.000 Channa striata KU692421 

KB 10 0.0 99.84 0.000 Channa striata KU692421 
BA 1 0.0 100.0 0.000 Channa striata KU692421 

BA 2 0.0 100.0 0.000 Channa striata KU692421 

BA 3 0.0 100.0 0.000 Channa striata KU692421 

BA 4 0.0 100.0 0.000 Channa striata KU692421 

Note: KW: Kedungwringin, BK: Bangkong, KA: Kalianget, WO: 
Waduk outlet, KS: Sempor, PW: Purbowangi, BA: Buayan, KB: 

Karang Bolong 
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The low genetic distance among individuals of C. 

striata was reportedly occurred in the wild population 

found in Lake Towuti, South Sulawesi, with values 

between 0.043 and 0.309% (Irmawati et al. 2017). Similar 

values were reported in China (Zhu et al. 2013), using 5 C. 

striata populations, which showed that the intraspecific 

genetic distances were ranged from 0.002% to 0.027%. In 

contrast, it was approximately 8 to 45 fold higher than 

among the species (0.091% to 0.219%). As observed in this 

research, the minimum (98%) and maximum (1.019%) 

values of genetic identity and distance, respectively, were 

reliable to determine the species status of the striped 
snakehead samples from Cingcingguling Rivers. The 

present result is consistent with previous research 

conducted by Aquilino et al. (2011) and Irmawati et al. 

(2017) that DNA barcoding is a powerful technique for 

species-level identification of snakehead fish. 

Furthermore, the K2P phylogenetic tree was 

reconstructed by considering neighbor-joining and 

maximum likelihood (Figure 2). Both algorithms produced 

a similar topology supported by high bootstrap values 

(ML=100; NJ=100). C. striata samples formed a 

monophyletic clade with their conspecific reference (Figure 

2). According to Xu et al. (2015) and Kusbiyanto et al. 

(2021), monophyly is also reliable data for species 

determination. Figure 2 shows that the striped snakehead 

samples and their conspecific were had a smaller branch 

scale than the predetermined scale of 0.02. This 

information strongly indicates that the samples belong to 

the same species as their closest related taxa (C. striata). 
Monophyly of C. striata was also detected between the 

natural and cultivated population in Vietnam (Nguyen and 

Duong 2015). 

This research also indicates that the CO1 gene is a 

reliable marker for species identification. Its reliability 

serves as a barcode because this gene varies among species 

due to its high mutation rate (Sachithanandam et al. 2012). 

Due to its variability, the CO1 gene is a suitable marker for 

unambiguous species identification (Balkhis et al. 2011; 

Winarni et al. 2021). This result is congruent with previous 

research in several locations in Indonesia (Muchlisin et al. 

2013; Irmawati et al. 2017; Pramono et al. 2017) and other 

countries (Aquilino et al. al. 2011; Triantafyllidis et al. 

2011), including Lake Greece. 

Historical demography and genetic diversity 
Overall, Tajima's D value was -2.564; meanwhile, this 

significant result proved that the neutral hypothesis of 

marker evolution was rejected, thereby leading to selection 

pressure. However, the negative sign rejected the 

assumption on selection pressure and indicated a recent 

population bottleneck (Tajima 1989; Jong et al. 2011). The 

negative signs and insignificant Fus' Fs supported the 
neutral marker and population bottleneck assumption, as 

shown in Table 2. According to Jong et al. (2011) and 

Mohammed et al. (2021), Tajimas' D and Fus' Fs values are 

calculated based on haplotype and nucleotide variations, 

respectively. This difference in the data used simply signifies 

that Fus' Fs values are more sensitive than Tajimas' D in 

terms of using it for neutral theory testing of the marker. 

 
 

Figure 2. Phylogenetic tree showing monophyly between samples 

and their conspecific references. left: ML value, right: NJ value 

 

 
 

This research analyzed a 593 bp COI gene fragment 

length of 53 individual C. striata collected from eight 

sampling sites. Furthermore, it was reported that 17 out of 

593 bp were polymorphic, resulting in 6 haplotypes. 

Overall haplotype and nucleotide diversities were 0.181 ± 

0.071, and 0.108% ± 0.095%, respectively. The data 

indicate that C. striata populations in the Cingcingguling 

River have low genetic diversity, and this is due to 2 

reasons. First, it is caused by small population sizes due to 

the recent bottleneck. Besides, this has been proven by 

negative and positive insignificant Tajimas' D and Fus' Fs 

values, respectively, as shown in Table 2. According to 
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Zanella et al. (2016) and Doublet et al. (2019), a small 

population shows low genetic diversity due to inbreeding 

depression. Second, it is caused by limited ancestors. This 

condition was proven by the haplotype network, which 

showed that the C. striata population in the Cingcingguling 

River had evolved from a common ancestor, as indicated in 

Figure 3. It was previously stated that limited maternal 

ancestors lead to the low genetic diversity of the offspring 

population because of the drift effect (Zanella et al. 2016). 

Besides, this attribute in C. striata populations was also 

observed in Malaysia (Jamaluddin et al. 2011). 

The present result is inconsistent with the previous 
research carried out in India (Baisvar et al. 2018), stating 

that C. striata populations exhibited a complex pattern of 

genetic diversity. However, this implies that it is a common 

phenomenon. Meanwhile, several fish species have 

reported high and low haplotype genetic diversity 

(Sukmanomon et al. 2012; Song et al. 2013; Barasa et al. 

2014; Nuryanto et al. 2020). This complex pattern of 

genetic diversity of C. striata populations indicates that 

environmental factors have exhibited different evolutionary 

forces on their populations, which needs further analysis. 

The within-population evaluation indicates that the 

haplotype diversity of the C. striata population in the 

Cingcingguling River ranges from 0.000±0.000 to 

0.378±0.181. The values prove that the striped snakehead 

population had low genetic diversity. The majority of the 

populations underneath the reservoir (PW, KB, and BA) are 

genetically homogenous. Moreover, two subpopulations (KA 

and KP) had low genetic diversity. This data indicates that 
river subpopulations show a complex genetic diversity 

pattern. The obtained values were lower than the 

previously reported results (Boonkusol and Tongbai 2016; 

Baisvar et al. 2018; 2019). The exploitation of C. Striata 

causes low genetic diversity, as indicated by the bottleneck 

effect shown by Tajimas' D and Fus Fs values in Table 2, 

which caused minor population size and an opportunity for 

inbreeding to occur. According to Hauser et al. (2002) and 

Tan et al. (2012), fishing pressure reduces genetic diversity 

in fish species. Meanwhile, low genetic diversity caused by 

exploitation also occurs in various aquatic organisms and 

several regions (Kochzius and Nuryanto 2008; Wibowo 

2012; Barasa et al. 2014; Tan et al. 2015; Baisvar. et al. 2019). 

Table 2 shows that the nucleotide diversity ranges from 

0.00±0.000% to 14.568±9.703%, and these values indicate 

that C. striata in the Cingcingguling River have both low 

and high nucleotide diversities. According to Kochzius and 

Nuryanto (2008) and Nuryanto et al. (2019), when this 

attribute is greater than 1%, it is highly diverse. Moreover, 

high nucleotide diversity was detected in reservoir 

populations of fish species in Victoria Lake (Barasa et al. 
2014). 

Population connectivity 

Per the reservoir population, there was no genetic 

difference between the four subpopulations. Therefore, this 

research focused on differentiating the reservoir and river 

populations. The amova results demonstrated that genetic 
variations were mainly observed within the population 

(104.27%, Table 3). It was assumed that no genetic 

differences occurred between reservoir and river 

populations along the Cingcingguling River, and this was 

supported by a negative fixation index (-0.043) and p-

values of 0.115. The data proved that C. striata populations 

in the Cingcingguling River formed a genetically 

continuous population. An interesting finding was that the 

Sempor Reservoir did not lead to fragmentation, as proven 

by the genetic similarities among the river populations. The 

phenomenon is related to the ecological characteristics of 

striped snakehead as negative rheotaxis fish, which prefer 

stagnant water ecosystems. Alteration of running water into 

a static ecosystem due to Sempor Reservoir did not 

significantly affect the genetics of C. striata both inside 

and outside. Previous studies reported that C. striata 

typically lives in a swampy ecosystem with stagnant water 
(Amilhat and Lorenzen 2005; Muflikhah 2007; Listyanto 

and Andriyanto 2009). 

 
 
Table 2. Genetic diversity value and neutrality test for the used marker 

 

Population N 
 Genetic diversity Neutrality test 

nhp h (x±SD) π (x±SD%) D P Fs P 

Overall 53 6 0.181±0.071 0.108±0.095 -2.564*** 0.000 -2.360ns 0.070 
SR 27 4 0.214±0.103 4.195±3.617 -2.226*** 0.001 -0.913ns 0.220 

KS 10 3 0.378±0.181 14.568±9.702 -1.901ns 0.006 1.726ns 0.831 

PW 2 1 0.000±0.000 0.000±0.000 0.000ns 1.000 - - 

KB 10 1 0.000±0.000 0.000±0.000 0.000 1.000 - - 
BA 4 1 0.000±0.000 0.000±0.000 0.000 1.000 - - 

Note: p> 0.05 = ns, 0.05>p>0.01= significant, p<0.01= highly significant, ns= non-significant, ***= highly significant 

 

 

Table 3. Variance and Fst analysis among Channa striata subpopulation 
 

Source of variation d.f. 
Sum of 

square 

Variance 

components 

Percentage of 

variation 

Fixation index 

(FST) 
p-value 

Among subpopulations 4 0.239 -0.004 Vans -4.27 -0.043ns 0.115±0.003 

Within subpopulations 48 4.478 0.093 Vb 104.27   

Total 52 4.717 0.089    

Note: p> 0.05 = non-significant (ns), 0.05>p>0.01= significant, p<0.01= highly significant 
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The present result is inconsistent with previous research 

carried out by Song et al. (2013), that significant genetic 

structure was found among rivers of the C. striata in 

Malaysia. However, this is due to differences in the 

research locations. This research examined C. striata in 

only one river but fragmented by the reservoir. In contrast, 

Song et al. (2013) researched different Malaysian river 

systems. It was previously reported that the river is a closed 

ecosystem and the freshwater populations tend to show 

significant genetic differences (Hughes 2009). Therefore, it 

was reasonable that Song et al. (2013) observed significant 

genetic differences among rivers. Even Kano et al. (2011) 
stated solid genetic structures could be observed among 

tributaries within a river system without physical barriers. 

However, the different research locations caused an 

imbalance comparison about genetic differentiation 

between the present research and that carried out by Kano 

et al. (2011). 

These findings were also inconsistent with the research 

on Barbonymus balleroides in the Serayu River conducted 

by Bahiyah et al. (2013). According to this research, the 

significant genetic structures between the reservoir and 

river population in the Serayu were observed. However, 

this research evaluated the population genetics of positive 

rheotaxis species (B. balleroides) whose primary habitat is 

running water. Therefore, the presence of reservoirs in the 

Serayu River altered the habitat of B. balleroides from 

running to stagnant water, which became an evolutionary 

factor causing genetic changes in its reservoir populations. 

Therefore, a significant genetic structure was observed in 
between B. balleroides population inside and outside the 

reservoir.  

 

It was previously reported, the presence of the Sempor 

Reservoir has altered upstream areas of Cingcinggguling 

River to become flooded ecosystems or stagnant water 

ecosystems (Hedianto et al. 2014). Nevertheless, 

ecosystems alteration in the Cingcingguling River did not 

change the typical habitat of C. striata.  It means that C. 

striata collected inside and outside the reservoir live in 

similar habitat types. Therefore, identical habitat types 

inside and outside the Sempor Reservoir did not cause 

genetic fragmentation of C. striata.  

A detailed analysis of the within-population showed 

that WO and KS subpopulations showed slightly higher 
genetic variability than downstream (Table 2). This 

difference in genetic diversity level might indicate that both 

subpopulations are less exploited than the lowland river 

regions. The assumption arises because both 

subpopulations reside close to reservoirs' outlets with 

strong outflow. The fishers are prohibited from collecting 

fish near the outlet because it is hazardous (Setyaningrum 

et al. 2020). However, due to the age of the reservoir, 

which is approximately 51 years old (Hedianto et al. 2014), 

higher genetic variability in the upper stream 

subpopulations did not cause significant genetic 

differentiation. Similar phenomena were reported in 

Chitala lopis (Wibowo et al. 2012) and African catfish 

(Barasa et al. 2014). 

Meanwhile, 6 COI haplotypes were observed in the 

Channa striata populations in the Cingcingguling River 

Central Java, Indonesia. Median-joining analysis proved 

that haplotype 1 was dominant and found in all 
subpopulations (Figure 3). The phenomenon strengthens 

the result of AMOVA that genetic homogeneity occurred 

along the Cingcingciguling River, and the reservoir did not 

cause genetic fragmentation in the C. striata population. 
 

 

 

 

 
 

Figure 3. Haplotype network indicates the genetic homogeneity of Channa striata in Cingcingguling River, Central Java, Indonesia 
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The star-like haplotype network (Figure 3) showed that 

C. striata populations in the Cingcingguling River evolved 

from a single maternal ancestor (H1). The network proved 

that H1 is the most primitive haplotype, characterized by 

high abundance and wide distribution in most populations. 

Similar phenomena were reported in preliminary research 

on the Channa in several regions (Balkhis et al. 2011; Song 

et al. 2012; Adamson et al. 2012; Basvar et al. 2018; 2019) 

and other fish groups (Barasa et al. 2014; Abila et al. 

2004).  

The snakehead fish in the Cingcingguling River was 

genetically identified as Channa striata and had low 
genetic diversity. The upper-stream subpopulations had 

higher genetic diversity than the downstream 

subpopulations. Also, there were no genetic differences 

between the reservoir and river populations, which simply 

means that C. striata formed a genetically homogenous 

population. These data indicate that C. striata need to be 

treated as a single genetic conservation unit. 
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