BAB 5 KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan asumsi-asumsi dan pembahasan pada bab-bab sebelumnya dapat disimpulkan sebagai berikut.

1. Model penyebaran penyakit Covid-19 dengan pengaruh perawatan medis (SEIH₁H₂R) yaitu

$$\frac{dS}{dt} = \Lambda N - (\mu + \beta \frac{I}{N})S$$

$$\frac{dE}{dt} = \beta S \frac{I}{N} - (\mu + \varepsilon)E$$

$$\frac{dI}{dt} = \varepsilon E - (\mu + \gamma + \mu_1 + \alpha)I$$

$$\frac{dH_1}{dt} = \gamma I - (\mu + \theta + \mu_2)H_1$$

$$\frac{dH_2}{dt} = \alpha I - (\mu + \delta + \mu_3)H_2$$

$$\frac{dR}{dt} = \theta H_1 + \delta H_2 - \mu R.$$

- 2. Berdasarkan hasil analisis, kedua titik ekuilibrium baik non endemik maupun endemik bersifat stabil asimtotis apabila $a_1, a_3 > 0$ dan $a_1a_2 > a_0a_3$, dan akan bersifat tidak stabil apabila $a_1, a_3 < 0$ dan $a_1a_2 > a_0a_3$.
- 3. Simulasi model dilakukan dengan menggunakan software Maple 13. Pada simulasi titik ekuilibrium non endemik dengan nilai parameter $\mu=0,0125$, $\Lambda=0,0125$, $\beta=0,5$, $\varepsilon=0,667$, $\sigma_1=0,00833$, $\sigma_2=0,3333$, $\sigma_3=0,1667$, $\gamma=0,9$, $\alpha=0,9$, $\theta=0,0556$, $\delta=0,1$, nilai $R_0=0,2695$ ($R_0<1$) sehingga mengakibatkan penyakit tidak akan mewabah. Pada simulasi titik ekuilibrium endemik, apabila nilai parameter $\gamma=0,09$ dan $\alpha=0,09$, nilai $R_0=2,4439$ ($R_0>1$) yang mengakibatkan penyakit akan mewabah. Semakin besar tingkat individu terinfeksi yang mendapatkan perawatan medis, maka semakin cepat populasi mencapai keadaan non endemik.

5.2 Saran

Pada penelitian ini telah dibahas model penyebaran Covid-19 dengan pengaruh perawatan medis. Untuk penelitian selanjutnya, penulis menyarankan pengembangan model dengan menambahkan beberapa kompartemen seperti individu terinfeksi tanpa gejala, vaksinasi dan karantina.

