

130

BAB V
PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan mengenai analisis

perbandingan performa WebSocket menggunakan Pusher dan Laravel Reverb pada

implementasi Live Cam website muncak.id, dapat diambil beberapa kesimpulan

sebagai berikut:

a. Implementasi Fitur Live Cam dengan Pusher

Implementasi fitur Live Cam menggunakan Pusher sebagai layanan

cloudbased WebSocket telah berhasil dilakukan dengan baik. Sistem mampu

menangani streaming video real-time, komunikasi chat, pembaruan jumlah

viewer, dan klasifikasi AI kondisi jalur secara otomatis. Pusher menyediakan

infrastruktur WebSocket yang matang dengan kemampuan auto-scaling

otomatis, kemudahan integrasi melalui API yang simpel, dan dokumentasi yang

lengkap. Proses deployment tidak memerlukan konfigurasi server WebSocket

yang kompleks karena seluruh infrastruktur komunikasi real-time dikelola oleh

Pusher.

b. Implementasi Fitur Live Cam dengan Laravel Reverb

Implementasi fitur Live Cam menggunakan Laravel Reverb sebagai server

WebSocket self-hosted telah berhasil dilakukan dengan fungsionalitas yang

identik dengan implementasi Pusher. Laravel Reverb menyediakan integrasi

native dengan ekosistem Laravel melalui sistem broadcasting yang sudah

terintegrasi. Proses deployment memerlukan konfigurasi tambahan seperti

instalasi Supervisor untuk menjalankan Reverb server sebagai daemon dan

131

pengaturan Redis sebagai backing storage. Meskipun memerlukan pengelolaan

server secara mandiri, Reverb memberikan kontrol penuh terhadap infrastruktur

komunikasi real-time tanpa ketergantungan pada layanan pihak ketiga.

c. Perbandingan Performa Kedua Implementasi WebSocket

Hasil pengujian performa menunjukkan perbedaan karakteristik yang

signifikan antara kedua implementasi sebagaimana ditunjukkan pada Tabel 33.

Tabel 33. Perbandingan Performa Pusher dan Laravel Reverb
Aspek

Performa Pusher Laravel Reverb Keterangan

Latensi
WebSocket

162,4 ms
(median)

2.186,8 ms
(median)

Pusher 13× lebih
cepat

Latensi HTTP 252,2 ms
(median)

11.050,8 ms
(median)

Pusher 44× lebih
cepat

Tingkat
Keberhasilan 100% (0 error) 99,01% (0,99%

error)
Pusher lebih stabil

Keberhasilan
Koneksi 100% 71,93% (gagal

28,07%)
Pusher lebih andal

Penggunaan
CPU

199,70% (rata-
rata)

303,27% (rata-
rata)

Pusher 52% lebih
efisien

Penggunaan
Memori 11.164,90 MB 10.495,04 MB Reverb 6% lebih

hemat

Throughput 15 request/detik 23 request/detik Reverb 53% lebih
tinggi

Koneksi
Bersamaan 1.394 koneksi 2.114 koneksi Reverb 52% lebih

banyak

Auto-scaling Ya (otomatis) Tidak (manual)
 Pusher unggul

skalabilitas

Berdasarkan tabel di atas, Pusher unggul dalam aspek latensi, stabilitas,

keandalan, dan efisiensi CPU dengan kemampuan auto-scaling otomatis.

Sementara itu, Laravel Reverb unggul dalam throughput, kapasitas koneksi

bersamaan, dan efisiensi memori, namun mengalami kegagalan koneksi

132

signifikan (28,07%) pada lonjakan trafik mendadak karena ketiadaan mekanisme

auto-scaling.

d. Implementasi Fitur Klasifikasi Tingkat Keramaian dengan API Artificial

Intelligence

Implementasi fitur klasifikasi tingkat keramaian menggunakan API artificial

intelligence telah berhasil diintegrasikan pada sistem Live Cam. Sistem mampu

melakukan capture frame dari video stream setiap 30 menit, mengirim gambar

ke AI Model API, dan menerima hasil klasifikasi kondisi jalur yang mencakup

cuaca (cerah, berawan, hujan), tingkat keramaian (sepi, sedang, ramai), dan

visibilitas (jelas, kabut sedang, kabut tebal) lengkap dengan confidence score.

Hasil klasifikasi disimpan ke basis data dan di-broadcast secara real-time kepada

seluruh viewer melalui WebSocket, sehingga pendaki dapat memperoleh

informasi kondisi jalur secara objektif tanpa perlu interpretasi manual dari

streaming video. Fitur ini memberikan nilai tambah signifikan pada sistem Live

Cam dengan menyediakan informasi kuantitatif yang dapat membantu pendaki

dalam pengambilan keputusan.

e. Rekomendasi Solusi WebSocket Optimal

Berdasarkan hasil analisis performa, rekomendasi penggunaan disesuaikan

dengan karakteristik dan kebutuhan aplikasi:

1. Pusher direkomendasikan untuk: Aplikasi yang memprioritaskan latensi

rendah dan stabilitas tinggi, aplikasi dengan trafik fluktuatif yang

memerlukan auto-scaling, aplikasi dengan budget untuk layanan cloudbased,

133

dan startup atau proyek yang ingin fokus pada pengembangan fitur tanpa

mengurus kompleksitas infrastruktur server.

2. Laravel Reverb direkomendasikan untuk: Aplikasi dengan beban stabil dan

dapat diprediksi, aplikasi yang memerlukan efisiensi memori dan throughput

tinggi, aplikasi dengan budget terbatas dan tim teknis yang mampu mengelola

server, serta aplikasi yang memerlukan kontrol penuh terhadap infrastruktur

dan data sovereignty.

3. Strategi Optimisasi Reverb: Untuk implementasi production, Laravel Reverb

memerlukan strategi tambahan seperti load balancing menggunakan Nginx

atau HAProxy, horizontal scaling dengan multiple instance, optimisasi

konfigurasi server (batas koneksi maksimum, parameter Redis,

PHPFPM/Octane), dan implementasi monitoring aktif dengan mekanisme

auto-

restart.

Secara keseluruhan, penelitian ini membuktikan bahwa pemilihan teknologi

WebSocket harus disesuaikan dengan prioritas performa, karakteristik beban

aplikasi, ketersediaan tim teknis, dan budget yang tersedia. Pusher merupakan

solusi production-ready untuk aplikasi yang memerlukan keandalan maksimal dan

kemudahan pengelolaan, sementara Laravel Reverb menjadi alternatif costeffective

untuk aplikasi dengan beban yang dapat diprediksi dan tim yang mampu melakukan

optimisasi infrastruktur.

134

5.2 Saran

Berdasarkan hasil penelitian dan kesimpulan yang telah dipaparkan, terdapat

beberapa saran untuk pengembangan lebih lanjut:

a. Implementasi FrankenPHP untuk Peningkatan Performa

Disarankan untuk mengimplementasikan FrankenPHP sebagai pengganti

PHP-FPM tradisional pada deployment production. FrankenPHP merupakan

application server modern yang dibangun menggunakan Caddy web server dan

mendukung fitur-fitur seperti worker mode, early hints, dan HTTP/3. Dengan

worker mode, aplikasi Laravel dapat tetap berada di memori sehingga

mengurangi overhead bootstrap pada setiap request. Implementasi FrankenPHP

diperkirakan dapat meningkatkan throughput hingga 3-4 kali lipat dibanding

PHP-FPM, yang sangat bermanfaat untuk menangani koneksi bersamaan pada

fitur live streaming. Selain itu, FrankenPHP juga mendukung HTTP/3 yang

dapat meningkatkan performa koneksi WebSocket, terutama pada kondisi

jaringan yang tidak stabil. Integrasi dengan Laravel Octane dan Laravel Reverb

dapat memaksimalkan keunggulan arsitektur event-driven untuk menangani

ribuan koneksi real-time secara bersamaan.

b. Pengujian Multiresolusi untuk Streaming Adaptif

Sistem saat ini menggunakan auto bitrate adjustment yang menyesuaikan

kualitas stream berdasarkan kondisi bandwidth. Untuk meningkatkan kualitas

pengalaman pengguna, disarankan melakukan pengujian performa pada

berbagai resolusi streaming yang telah ditentukan yaitu 360p (640×360, bitrate

~500 Kbps), 720p (1280×720, bitrate ~2500 Kbps), dan 1080p (1920×1080,

135

bitrate ~5000 Kbps). Pengujian ini penting untuk memvalidasi bahwa sistem

dapat menangani beban yang berbeda pada setiap tingkat resolusi dan

memberikan data konkret mengenai resource utilization (CPU, memori,

bandwidth) pada masing-masing resolusi. Hasil pengujian dapat digunakan

sebagai acuan untuk implementasi Adaptive Bitrate Streaming (ABR) yang lebih

terstruktur di masa mendatang, di mana sistem secara otomatis dapat memilih

resolusi optimal berdasarkan kondisi jaringan pengguna. Pengujian pada setiap

resolusi juga perlu mencakup skenario stress testing dengan jumlah viewer yang

bervariasi untuk mengidentifikasi bottleneck pada setiap tingkat kualitas

streaming.

c. Optimisasi Implementasi Laravel Reverb

Untuk meningkatkan performa Laravel Reverb dalam menangani lonjakan

trafik mendadak, disarankan untuk mengimplementasikan arsitektur horizontal

scaling dengan beberapa instance Reverb server yang di-load balance

menggunakan Nginx atau HAProxy. Implementasi connection pooling dan

optimisasi konfigurasi Redis sebagai message broker antarinstans dapat

meningkatkan kemampuan sistem dalam menangani koneksi bersamaan. Selain

itu, perlu dilakukan fine-tuning pada parameter PHP-FPM atau Laravel Octane

untuk memaksimalkan penggunaan sumber daya server. Konfigurasi worker

process, max connections per worker, dan timeout settings perlu disesuaikan

berdasarkan karakteristik beban kerja streaming real-time yang memiliki pola

koneksi long-lived.

d. Penelitian Lanjutan tentang Skalabilitas

136

Penelitian lebih lanjut perlu dilakukan untuk menguji skalabilitas kedua solusi

pada skala yang lebih besar dengan simulasi ribuan hingga puluhan ribu koneksi

bersamaan. Pengujian dalam kondisi jaringan yang berbeda (latency, bandwidth,

packet loss) juga perlu dilakukan untuk memahami perilaku sistem dalam

kondisi jaringan yang tidak ideal. Studi komparasi dengan solusi WebSocket

lainnya seperti Socket.IO, Ably, atau Centrifugo dapat memberikan perspektif

yang lebih komprehensif. Penelitian tentang trade-off antara biaya operasional,

kompleksitas implementasi, dan performa pada berbagai skenario penggunaan

juga dapat memberikan panduan bagi organisasi dalam memilih solusi yang

paling sesuai dengan kebutuhan mereka.

e. Pengembangan Fitur Klasifikasi AI

Fitur klasifikasi AI dapat dikembangkan lebih lanjut dengan menambahkan

kategori analisis seperti deteksi cuaca ekstrem, prediksi kondisi jalur

berdasarkan historical data, dan integrasi dengan sensor IoT untuk data

lingkungan yang lebih akurat. Implementasi model AI on-device menggunakan

TensorFlow.js atau ONNX Runtime dapat mengurangi ketergantungan pada API

eksternal dan meningkatkan kecepatan klasifikasi. Sistem juga dapat

dikembangkan untuk memberikan notifikasi real-time kepada pendaki ketika

terdeteksi kondisi berbahaya. Penggunaan model lightweight seperti MobileNet

atau EfficientNet dapat mengoptimalkan performa klasifikasi pada perangkat

dengan sumber daya terbatas. Selain itu, implementasi feedback loop untuk

meningkatkan akurasi model berdasarkan data aktual dari lapangan dapat

meningkatkan reliabilitas sistem peringatan dini.

137

f. Implementasi Fitur Tambahan

Pengembangan fitur-fitur tambahan seperti recording dan playback siaran

untuk arsip, sistem moderasi chat berbasis AI untuk menyaring konten tidak

pantas, fitur multicamera streaming dari berbagai sudut pandang, dan integrasi

dengan sistem booking atau reservasi pos pendakian dapat meningkatkan nilai

tambah platform. Implementasi fitur offline mode dengan Progressive Web App

(PWA) juga dapat meningkatkan aksesibilitas bagi pendaki di area dengan

koneksi internet terbatas. Fitur collaborative streaming yang memungkinkan

beberapa broadcaster melakukan siaran bersama dalam satu session dapat

menciptakan pengalaman yang lebih interaktif. Integrasi dengan platform media

sosial untuk cross-posting dan sharing juga dapat meningkatkan jangkauan

konten.

g. Monitoring dan Analytics yang Lebih Komprehensif

Implementasi sistem monitoring real-time yang lebih canggih menggunakan

tools seperti Grafana, Prometheus, atau New Relic dapat memberikan visibilitas

yang lebih baik terhadap performa sistem. Dashboard analytics yang

menampilkan metrik seperti viewer retention rate, peak concurrent viewers,

average watch time, dan chat engagement dapat membantu broadcaster

memahami perilaku viewer dan meningkatkan kualitas siaran. Error tracking

dan alerting system yang terintegrasi dengan Slack atau Discord juga penting

untuk respons cepat terhadap insiden. Implementasi distributed tracing

menggunakan tools seperti Jaeger atau Zipkin dapat membantu mengidentifikasi

bottleneck pada arsitektur microservices. Log aggregation dengan ELK Stack

138

(Elasticsearch, Logstash, Kibana) dapat memudahkan debugging dan analisis

pola error.

h. Optimisasi Biaya Operasional

Untuk implementasi dengan Pusher, perlu dilakukan analisis biaya

operasional secara detail dan eksplorasi paket berlangganan yang sesuai dengan

proyeksi pertumbuhan pengguna. Implementasi caching strategy yang efektif

dapat mengurangi jumlah message yang dikirim dan menghemat biaya. Untuk

implementasi dengan Reverb, optimisasi penggunaan sumber daya server dan

implementasi auto-scaling infrastruktur menggunakan Kubernetes atau Docker

Swarm dapat meningkatkan efisiensi biaya jangka panjang. Analisis cost per

concurrent connection dan cost per message dapat membantu dalam membuat

keputusan strategis tentang kapan harus beralih dari managed service ke

selfhosted solution. Implementasi resource pooling dan optimisasi database

query juga dapat mengurangi kebutuhan infrastruktur.

i. Peningkatan Keamanan Sistem

Implementasi mekanisme keamanan tambahan seperti rate limiting yang

lebih ketat, IP whitelisting untuk broadcaster, enkripsi end-to-end untuk chat

messages, dan sistem authentication token dengan expiry time yang lebih pendek

perlu dipertimbangkan. Audit log untuk semua aktivitas penting dan

implementasi Web Application Firewall (WAF) juga dapat meningkatkan

keamanan sistem secara keseluruhan. Penetration testing berkala untuk

mengidentifikasi kerentanan keamanan dan implementasi security headers

139

seperti Content Security Policy (CSP) dan HTTP Strict Transport Security

(HSTS) dapat melindungi sistem dari serangan common web vulnerabilities.

Implementasi multi-factor authentication (MFA) untuk akun broadcaster dan

admin juga dapat meningkatkan keamanan akses.

j. Dokumentasi dan Knowledge Transfer

Dokumentasi teknis yang komprehensif mencakup arsitektur sistem,

konfigurasi server, prosedur deployment, troubleshooting guide, dan disaster

recovery plan perlu disusun dan dipelihara secara berkala. Program pelatihan

untuk tim support dan operations tentang pengelolaan sistem Live Cam juga

penting untuk memastikan keberlanjutan operasional platform. Dokumentasi

API yang lengkap dengan contoh penggunaan dan best practices dapat

memudahkan integrasi dengan sistem eksternal. Pembuatan runbook untuk

incident response dan standard operating procedures (SOP) untuk maintenance

rutin dapat meningkatkan efisiensi operasional.

k. Kolaborasi dengan Komunitas Pendaki

Melibatkan komunitas pendaki dalam pengembangan fitur melalui user

feedback dan beta testing dapat memastikan bahwa platform memenuhi

kebutuhan nyata pengguna. Program content creator untuk broadcaster yang

aktif dan sistem reputasi untuk viewer yang berkontribusi positif dapat

meningkatkan engagement dan kualitas konten pada platform. Implementasi

forum diskusi atau community board dapat memfasilitasi knowledge sharing

antarpengguna. Partnership dengan organisasi pendaki, taman nasional, dan

komunitas pecinta alam dapat meningkatkan kredibilitas dan adopsi platform.

140

l. Riset Pengalaman Pengguna (User Experience)

Penelitian kualitatif dan kuantitatif tentang pengalaman pengguna (User

Experience/UX) dalam menggunakan fitur Live Cam perlu dilakukan untuk

mengidentifikasi area perbaikan dalam hal usability, aksesibilitas, dan kepuasan

pengguna. A/B testing untuk berbagai elemen antarmuka dan analisis user

journey dapat memberikan insights berharga untuk pengembangan produk.

Implementasi accessibility standards seperti WCAG 2.1 untuk memastikan

platform dapat digunakan oleh pengguna dengan disabilitas juga perlu

dipertimbangkan. Usability testing dengan target pengguna yang beragam dapat

mengidentifikasi friction points dalam user flow dan memberikan data empiris

untuk design decisions.

