BABV
PENUTUP

5.1 Kesimpulan
Berdasarkan hasil penelitian yang telah dilakukan mengenai analisis
perbandingan performa WebSocket menggunakan Pusher dan Laravel Reverb pada
implementasi Live Cam website muncak.id, dapat diambil beberapa kesimpulan
sebagai berikut:
a. Implementasi Fitur Live Cam dengan Pusher
Implementasi fitur Live Cam menggunakan Pusher sebagai layanan
cloudbased WebSocket telah berhasil dilakukan dengan baik. Sistem mampu
menangani streaming video real-time, komunikasi chat, pembaruan jumlah
viewer, dan klasifikasi Al kondisi jalur secara otomatis. Pusher menyediakan
infrastruktur WebSocket yang matang dengan kemampuan auto-scaling
otomatis, kemudahan integrasi melalui API yang simpel, dan dokumentasi yang
lengkap. Proses deployment tidak memerlukan konfigurasi server WebSocket
yang kompleks karena seluruh infrastruktur komunikasi real-time dikelola oleh
Pusher.
b. Implementasi Fitur Live Cam dengan Laravel Reverb
Implementasi fitur Live Cam menggunakan Laravel Reverb sebagai server
WebSocket self-hosted telah berhasil dilakukan dengan fungsionalitas yang
identik dengan implementasi Pusher. Laravel Reverb menyediakan integrasi
native dengan ekosistem Laravel melalui sistem broadcasting yang sudah
terintegrasi. Proses deployment memerlukan konfigurasi tambahan seperti

instalasi Supervisor untuk menjalankan Reverb server sebagai daemon dan

130

pengaturan Redis sebagai backing storage. Meskipun memerlukan pengelolaan

server secara mandiri, Reverb memberikan kontrol penuh terhadap infrastruktur

komunikasi real-time tanpa ketergantungan pada layanan pihak ketiga.

c. Perbandingan Performa Kedua Implementasi WebSocket

Hasil pengujian performa menunjukkan perbedaan karakteristik yang

signifikan antara kedua implementasi sebagaimana ditunjukkan pada Tabel 33.

Tabel 33. Perbandingan Performa Pusher dan Laravel Reverb

Aspek Pusher Laravel Reverb Keterangan
Performa
Latensi 162,4 ms 2.186,8 ms Pusher 13x lebih
WebSocket (median) (median) cepat
Latensi HTTP 252,2. ms 1 1.050?8 ms Pusher 44x lebih
(median) (median) cepat
; 5 5 ; i
Tingkat) 100% (0. error) 99,01% (0,99% | Pusher lebih stabil
Keberhasilan error)
Keberhasilan 100% 71,93% (gagal | Pusher lebih andal
Koneksi y 28,07%)
Penggunaan 199,70% (rata- 303,27% (rata- Pusher 52% lebih
CPU rata) rata) efisien
p ’
Penggunaan 11.164,90 MB 1049504 MB | Reverb 6% lebih
Memori hemat
5 ;
Throughput 15 request/detik. | 23 request/detik Reverzsgg/io poin
: 5 -
KoRg! | 394 koneksi——2.114 kongksi | RSVEOgFo lebih
Bersamaan banyak
Pusher unggul
Auto-scaling Ya (otomatis) Tidak (manual) skalabilitas

Berdasarkan tabel di atas, Pusher unggul dalam aspek latensi, stabilitas,

keandalan, dan efisiensi CPU dengan kemampuan auto-scaling otomatis.

Sementara itu, Laravel Reverb unggul dalam throughput, kapasitas koneksi

bersamaan, dan efisiensi memori, namun mengalami kegagalan koneksi

131

signifikan (28,07%) pada lonjakan trafik mendadak karena ketiadaan mekanisme
auto-scaling.
. Implementasi Fitur Klasifikasi Tingkat Keramaian dengan API Artificial
Intelligence

Implementasi fitur klasifikasi tingkat keramaian menggunakan API artificial
intelligence telah berhasil diintegrasikan pada sistem Live Cam. Sistem mampu
melakukan capture frame dari video stream setiap 30 menit, mengirim gambar
ke Al Model API, dan menerima hasil klasifikasi kondisi jalur yang mencakup
cuaca (cerah, berawan, hujan), tingkat keramaian (sepi, sedang, ramai), dan
visibilitas (jelas, kabut sedang, kabut tebal) lengkap dengan confidence score.
Hasil klasifikasi disimpan ke basis data dan di-broadcast secara real-time kepada
seluruh viewer melalui WebSocket, sehingga pendaki dapat memperoleh
informasi kondisi jalur secara objektif tanpa perlu interpretasi manual dari
streaming video. Fitur ini memberikan nilai tambah signifikan pada sistem Live
Cam dengan menyediakan informasi kuantitatif yang dapat membantu pendaki
dalam pengambilan keputusan.
. Rekomendasi Solusi WebSocket Optimal

Berdasarkan hasil analisis performa, rekomendasi penggunaan disesuaikan
dengan karakteristik dan kebutuhan aplikasi:
1. Pusher direkomendasikan untuk: Aplikasi yang memprioritaskan latensi

rendah dan stabilitas tinggi, aplikasi dengan trafik fluktuatif yang

memerlukan auto-scaling, aplikasi dengan budget untuk layanan cloudbased,

132

dan startup atau proyek yang ingin fokus pada pengembangan fitur tanpa

mengurus kompleksitas infrastruktur server.

2. Laravel Reverb direkomendasikan untuk: Aplikasi dengan beban stabil dan
dapat diprediksi, aplikasi yang memerlukan efisiensi memori dan throughput
tinggi, aplikasi dengan budget terbatas dan tim teknis yang mampu mengelola
server, serta aplikasi yang memerlukan kontrol penuh terhadap infrastruktur
dan data sovereignty.

3. Strategi Optimisasi Reverb: Untuk implementasi production, Laravel Reverb
memerlukan strategi tambahan seperti load balancing menggunakan Nginx
atau HAProxy, horizontal scaling dengan multiple instance, optimisasi
konfigurasi server (batas koneksi maksimum, parameter Redis,
PHPFPM/Octane), dan implementasi monitoring aktif dengan mekanisme
auto-
restart.

Secara keseluruhan, penelitian ini membuktikan bahwa pemilihan teknologi
WebSocket harus disesuaikan. dengan prioritas performa, karakteristik beban
aplikasi, ketersediaan tim teknis, dan budget yang tersedia. Pusher merupakan
solusi production-ready untuk aplikasi yang memerlukan keandalan maksimal dan
kemudahan pengelolaan, sementara Laravel Reverb menjadi alternatif costeffective
untuk aplikasi dengan beban yang dapat diprediksi dan tim yang mampu melakukan

optimisasi infrastruktur.

133

5.2 Saran
Berdasarkan hasil penelitian dan kesimpulan yang telah dipaparkan, terdapat
beberapa saran untuk pengembangan lebih lanjut:
a. Implementasi FrankenPHP untuk Peningkatan Performa
Disarankan untuk mengimplementasikan FrankenPHP sebagai pengganti
PHP-FPM tradisional pada deployment production. FrankenPHP merupakan
application server modern yang dibangun menggunakan Caddy web server dan
mendukung fitur-fitur seperti worker mode, early hints, dan HTTP/3. Dengan
worker mode, aplikasi Laravel dapat tetap berada di memori sehingga
mengurangi overhead bootstrap pada setiap request. Implementasi FrankenPHP
diperkirakan dapat meningkatkan throughput hingga 3-4 kali lipat dibanding
PHP-FPM, yang sangat bermanfaat untuk menangani koneksi bersamaan pada
fitur live streaming. Selain itu, FrankenPHP juga mendukung HTTP/3 yang
dapat meningkatkan performa koneksi WebSocket, terutama pada kondisi
jaringan yang tidak stabil. Integrasi dengan Laravel Octane dan Laravel Reverb
dapat memaksimalkan keunggulan arsitektur event-driven untuk menangani
ribuan koneksi real-time secara bersamaan.
b. Pengujian Multiresolusi untuk Streaming Adaptif
Sistem saat ini menggunakan auto bitrate adjustment yang menyesuaikan
kualitas stream berdasarkan kondisi bandwidth. Untuk meningkatkan kualitas
pengalaman pengguna, disarankan melakukan pengujian performa pada
berbagai resolusi streaming yang telah ditentukan yaitu 360p (640%360, bitrate

~500 Kbps), 720p (1280x720, bitrate ~2500 Kbps), dan 1080p (1920x1080,

134

bitrate ~5000 Kbps). Pengujian ini penting untuk memvalidasi bahwa sistem
dapat menangani beban yang berbeda pada setiap tingkat resolusi dan
memberikan data konkret mengenai resource utilization (CPU, memori,
bandwidth) pada masing-masing resolusi. Hasil pengujian dapat digunakan
sebagai acuan untuk implementasi Adaptive Bitrate Streaming (ABR) yang lebih
terstruktur di masa mendatang, di mana sistem secara otomatis dapat memilih
resolusi optimal berdasarkan kondisi jaringan pengguna. Pengujian pada setiap
resolusi juga perlu mencakup skenario stress testing dengan jumlah viewer yang
bervariasi untuk mengidentifikasi bottleneck pada setiap tingkat kualitas
Streaming.
c. Optimisasi Implementasi Laravel Reverb

Untuk meningkatkan performa Laravel Reverb dalam menangani lonjakan
trafik mendadak, disarankan untuk mengimplementasikan arsitektur horizontal
scaling dengan beberapa instance Reverb server yang di-load balance
menggunakan Nginx atau HAProxy. Implementasi connection pooling dan
optimisasi konfigurasi Redis sebagai message broker antarinstans dapat
meningkatkan kemampuan sistem dalam menangani koneksi bersamaan. Selain
itu, perlu dilakukan fine-tuning pada parameter PHP-FPM atau Laravel Octane
untuk memaksimalkan penggunaan sumber daya server. Konfigurasi worker
process, max connections per worker, dan timeout settings perlu disesuaikan
berdasarkan karakteristik beban kerja streaming real-time yang memiliki pola
koneksi long-lived.

d. Penelitian Lanjutan tentang Skalabilitas

135

Penelitian lebih lanjut perlu dilakukan untuk menguji skalabilitas kedua solusi
pada skala yang lebih besar dengan simulasi ribuan hingga puluhan ribu koneksi
bersamaan. Pengujian dalam kondisi jaringan yang berbeda (latency, bandwidth,
packet loss) juga perlu dilakukan untuk memahami perilaku sistem dalam
kondisi jaringan yang tidak ideal. Studi komparasi dengan solusi WebSocket
lainnya seperti Socket.1O, Ably, atau Centrifugo dapat memberikan perspektif
yang lebih komprehensif. Penelitian tentang trade-off antara biaya operasional,
kompleksitas implementasi, dan performa pada berbagai skenario penggunaan
juga dapat memberikan panduan bagi organisasi dalam memilih solusi yang
paling sesuai dengan kebutuhan mereka.

. Pengembangan Fitur Klasifikasi Al

Fitur klasifikasi Al dapat dikembangkan lebih lanjut dengan menambahkan
kategori - analisis seperti deteksi cuaca ekstrem, prediksi kondisi jalur
berdasarkan historical data, dan integrasi dengan sensor IoT untuk data
lingkungan yang lebih akurat. Implementasi model Al on-device menggunakan
TensorFlow.js atau ONNX Runtime dapat mengurangi ketergantungan pada API
eksternal dan meningkatkan kecepatan klasifikasi. Sistem juga dapat
dikembangkan untuk memberikan notifikasi real-time kepada pendaki ketika
terdeteksi kondisi berbahaya. Penggunaan model lightweight seperti MobileNet
atau EfficientNet dapat mengoptimalkan performa klasifikasi pada perangkat
dengan sumber daya terbatas. Selain itu, implementasi feedback loop untuk
meningkatkan akurasi model berdasarkan data aktual dari lapangan dapat

meningkatkan reliabilitas sistem peringatan dini.

136

f. Implementasi Fitur Tambahan

Pengembangan fitur-fitur tambahan seperti recording dan playback siaran
untuk arsip, sistem moderasi chat berbasis Al untuk menyaring konten tidak
pantas, fitur multicamera streaming dari berbagai sudut pandang, dan integrasi
dengan sistem booking atau reservasi pos pendakian dapat meningkatkan nilai
tambah platform. Implementasi fitur offline mode dengan Progressive Web App
(PWA) juga dapat meningkatkan aksesibilitas bagi pendaki di area dengan
koneksi internet terbatas. Fitur collaborative streaming yang memungkinkan
beberapa broadcaster melakukan siaran bersama dalam satu session dapat
menciptakan pengalaman yang lebih interaktif. Integrasi dengan platform media
sosial untuk cross-posting dan sharing juga dapat meningkatkan jangkauan
konten.

g. Monitoring dan Analytics yang I.ebih Komprehensif

Implementasi sistem monitoring real-time yang lebih canggih menggunakan
tools seperti Grafana, Prometheus, atau New Relic dapat memberikan visibilitas
yang lebih baik terhadap performa sistem. Dashboard analytics yang
menampilkan metrik seperti viewer retention rate, peak concurrent viewers,
average watch time, dan chat engagement dapat membantu broadcaster
memahami perilaku viewer dan meningkatkan kualitas siaran. Error tracking
dan alerting system yang terintegrasi dengan Slack atau Discord juga penting
untuk respons cepat terhadap insiden. Implementasi distributed tracing
menggunakan fools seperti Jaeger atau Zipkin dapat membantu mengidentifikasi

bottleneck pada arsitektur microservices. Log aggregation dengan ELK Stack

137

(Elasticsearch, Logstash, Kibana) dapat memudahkan debugging dan analisis

pola error.

. Optimisasi Biaya Operasional

Untuk implementasi dengan Pusher, perlu dilakukan analisis biaya
operasional secara detail dan eksplorasi paket berlangganan yang sesuai dengan
proyeksi pertumbuhan pengguna. Implementasi caching strategy yang efektif
dapat mengurangi jumlah message yang dikirim dan menghemat biaya. Untuk
implementasi dengan Reverb, optimisasi penggunaan sumber daya server dan
implementasi auto-scaling infrastruktur menggunakan Kubernetes atau Docker
Swarm dapat meningkatkan efisiensi biaya jangka panjang. Analisis cost per
concurrent connection dan cost per message dapat membantu dalam membuat
keputusan strategis tentang kapan harus beralih dari managed service ke
selfhosted solution. Implementasi resource pooling dan optimisasi database

query juga dapat mengurangi kebutuhan infrastruktur.

i. Peningkatan Keamanan Sistem

Implementasi mekanisme keamanan tambahan seperti rate limiting yang
lebih ketat, IP whitelisting untuk broadcaster, enkripsi end-to-end untuk chat
messages, dan sistem authentication token dengan expiry time yang lebih pendek
perlu dipertimbangkan. Audit log untuk semua aktivitas penting dan
implementasi Web Application Firewall (WAF) juga dapat meningkatkan
keamanan sistem secara keseluruhan. Penetration testing berkala untuk

mengidentifikasi kerentanan keamanan dan implementasi security headers

138

seperti Content Security Policy (CSP) dan HTTP Strict Transport Security

(HSTS) dapat melindungi sistem dari serangan common web vulnerabilities.

Implementasi multi-factor authentication (MFA) untuk akun broadcaster dan

admin juga dapat meningkatkan keamanan akses.

j. Dokumentasi dan Knowledge Transfer

Dokumentasi teknis yang komprehensif mencakup arsitektur sistem,

konfigurasi server, prosedur deployment, troubleshooting guide, dan disaster
recovery plan perlu disusun dan dipelihara secara berkala. Program pelatihan
untuk tim support dan operations tentang pengelolaan sistem Live Cam juga
penting untuk memastikan keberlanjutan operasional platform. Dokumentasi
API yang lengkap dengan contoh penggunaan dan best practices dapat
memudahkan integrasi dengan sistem eksternal. Pembuatan runbook untuk
incident response dan standard operating procedures (SOP) untuk maintenance
rutin dapat meningkatkan efisiensi operasional.

. Kolaborasi dengan Komunitas Pendaki

Melibatkan komunitas pendaki dalam pengembangan fitur melalui user

feedback dan beta testing dapat memastikan bahwa platform memenuhi
kebutuhan nyata pengguna. Program content creator untuk broadcaster yang
aktif dan sistem reputasi untuk viewer yang berkontribusi positif dapat
meningkatkan engagement dan kualitas konten pada platform. Implementasi
forum diskusi atau community board dapat memfasilitasi knowledge sharing
antarpengguna. Partnership dengan organisasi pendaki, taman nasional, dan

komunitas pecinta alam dapat meningkatkan kredibilitas dan adopsi platform.

139

l. Riset Pengalaman Pengguna (User Experience)

Penelitian kualitatif dan kuantitatif tentang pengalaman pengguna (User
Experience/UX) dalam menggunakan fitur Live Cam perlu dilakukan untuk
mengidentifikasi area perbaikan dalam hal usability, aksesibilitas, dan kepuasan
pengguna. A/B testing untuk berbagai elemen antarmuka dan analisis user
journey dapat memberikan insights berharga untuk pengembangan produk.
Implementasi accessibility standards seperti WCAG 2.1 untuk memastikan
platform dapat digunakan oleh pengguna dengan disabilitas juga perlu
dipertimbangkan. Usability testing dengan target pengguna yang beragam dapat
mengidentifikasi friction points dalam user flow dan memberikan data empiris

untuk design decisions.

140

